Ref No:		

Sri Krishna Institute of Technology, Bangalore

COURSE PLAN

Academic Year 2019-2020

Program:	BE			
Semester :	2			
Course Code:	18ELN24			
Course Title:	Basic Electronics			
Credit / L-T-P:	3 / 2-2-0			
Total Contact Hours:	50			
Course Plan Author:	Shilpa Rani P/ Kiranmayi M			

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology

#29,Chimney hills,Hesaraghata Main road, Chikkabanavara Post Bangalore – 560090, Karnataka, INDIA

Phone / Fax :08023721477/28392221/23721315 Web: www.skit.org.in , e-mail: <u>skitprinci@gmail.com</u>

Table of Contents

A. COURSE INFORMATION	3
1. Course Overview	3
2. Course Content	3
3. Course Material	4
4. Course Prerequisites	4
5. Content for Placement, Profession, HE and GATE	5
B. OBE PARAMETERS	5
1. Course Outcomes	5
2. Course Applications	
3. Articulation Matrix	6
4. Curricular Gap and Content	6
C. COURSE ASSESSMENT	
1. Course Coverage	
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	7
Module - 1	
E1. CIA EXAM – 1	
a. Model Question Paper - 1	
b. Assignment -1	9
D2. TEACHING PLAN - 2	10
Module – 2	10
Module – 3	
E2. CIA EXAM – 2	
a. Model Question Paper - 2	12
b. Assignment – 2	
D3. TEACHING PLAN - 3	14
Module – 4	14
Module – 5	15
E3. CIA EXAM – 3	16
a. Model Question Paper - 3	16
b. Assignment – 3	
F. EXAM PREPARATION	
1. University Model Question Paper	
2. SEE Important Questions	18

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	EC
Semester:	2	Academic Year:	2019-20
Course Title:	Basic Electronics	Course Code:	18ELN24
Credit / L-T-P:	3 / 2-2-0	SEE Duration:	180 Minutes
Total Contact Hours:	50 Hours	SEE Marks:	60 Marks
CIA Marks:	40 Marks	Assignment	1 / Module
Course Plan Author:	Mrs. Shilpa Rani P/ Mrs. Kiranmayi M	Sign	Dt:21/02/2019
Checked By:		Sign	Dt:
CO Targets	CIA Target : 80%	SEE Target:	65 %

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute.

Mod ule	Content	Teaching Hours	Blooms Learning Levels
_	Semiconductor Diodes and Applications: P-N junction diode,	12	L1,L2,L3
'	Equivalent circuit of diode, Zener diode and zener diode as a	12	,,_
	regulator. Rectification-Half wave rectifier, full wave rectifier,		
	bridge rectifier, capacitor filter circuit, Photo diode, LED, Photo		
	coupler, 78XX series and 7805 fixed IC voltage regulator		
2	FET and SCR: Introduction to JFET, construction and	8	L1,L2
	operation, JFET drain characteristics and parameters, JFET		
	transfer characteristics, Square law expression ID , Input		
	resistance, MOSFET: Depletion and enhancement type		
	construction, operation, characteristics and symbols. CMOS,		
	Silicon Controlled Rectifier- two transistor model, Switching		
	action characteristics and phase control application		
3	Operational Amplifiers and Applications: Introduction to op-amp,	8	L1,L2,L3
	Op-amp input modes, Op-amp parameters-CMRR, Input offset		
	voltage and current, Input bias current, Input and output		
	impedance , Slew rate. Applications of op-amp- Inverting		
	amplifier, Non-inverting amplifier, Summer, voltage follower,		
	integrator, differentiator, comparator		
4	BJT applications. Feedback amplifiers and oscillators: BJT as	12	L1,L2,L3
	an amplifier, as a switch, Transistor switch circuit to switch		
	ON/OFF an LED and a lamp in a power circuit using relay.		
	Feedback amplifiers-Principle, properties and advantages of		
	negative feedback, Types of feedback, Voltage series feedback		
	and gain stability with feedback, Oscillators- Barkhaunsen's		
	criteria for oscillation, RC phase shift oscillator, Wein bridge		
_	oscillator, IC 555 timer and astable oscillator using IC 555	40	111212
5	Digital Electronics Fundamentals: Difference between analog	13	L1,L2, L3
	and digital signals, Number systems: Binary and hexadecimal,		
	Conversion: Decimal to binary and hexadecimal to decimal and vice-versa, Boolean algebra, Basic and universal gates, Half		
	and full adder, Multiplexer, decoder, SR and JK flip flops, Shift		
	register, 3 bit Ripple counter. Basic communication system,		
	Principle of operations of Mobile phone		
-	Total	53	-
	5 - 5 - 5		

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

- 1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15-30 minutes
- 2. Design: Simulation and design tools used software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

J. 11C3C	earch: Recent developments on the concepts – publications in journals; confe	erences en	J
Module	Details	Chapters	Availability
S		in book	
	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2, 3,	D P Kothari, I J Nagarath, "Basic Electronics", 2 nd edn, Mc Graw Hill, 2018	2,3,6,7,8,	In Lib
4, 5		10,17,18	
3	Thomas.L.Floyd, "Electronic Devices", Pearson education, 9 th edition, 2012	12	In Lib
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1,	D P Kothari, I J Nagarath, "Basic Electronics", 1 st edn, Mc Graw Hill, 2014	2,3,6,7,8,	In Lib
2,3,4,5		10,17,18	
, , ,	Boylestad, Nashelskey,"Electronic Devices and Circuit theory", Pearson Education, 9 th edition, 2007/11 th edition, 2013	,	In Lib
1,2,3,4	David A Bell, "Electronic Devices And Circuits", Oxford University Press, 5 th Edition, 2008	3,4	In lib
С	Concept Videos or Simulation for Understanding	-	-
C1	https://www.youtube.com/watch?v=cOICDYuY-gA		
C2	https://www.youtube.com/watch?v=yaUMBKjkOjg		
C3	https://www.youtube.com/watch?v=9h7_vDUE908		
C4	https://www.youtube.com/watch?v=iJYm_BGqa1A		
C5	https://www.youtube.com/watch?v=3ORJa_Hu0SE		
	https://www.youtube.com/watch?v=THNNc7AYrQU		
C6	https://www.youtube.com/watch?v=_JMV4ywAJug		
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)	-	
1	,,,,		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content . . .

Mod	Course	Course Name	Topic / Description	Sem	Remarks	Blooms
ules	Code					Level

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course

Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod ules	Topic / Description	Area	Re	marks	Blooms Level

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs.

_	_	and mobile phones. Total	53		_	L2-L4
		operation of communication system			Assignme nt	
6	18ELN24.6	Describe the basic principle of	4	Lecture	Test &	L2
5		Explain the different number system and their conversations and construct simple combinational and sequential logic circuits using Flip-Flops.	9	Lecture	Test & Assignme nt	L3
4	18ELN24.4	Explain the working and design of Fixed voltage IC regulator using 7805 and astable oscillator using Timer IC 555.	5	Lecture	Test & Assignme nt	L3
3		Describe general operating principles of SCRs and its application.	5	Lecture	Test & Assignme nt	L2
2	18ELN24.2	Design and explain the construction of rectifiers, regulators, amplifiers and oscillators.	14	Lecture	Test & Assignme nt	L3
1		Describe the operation of diodes, BJT, FET and Operational Amplifiers.	16	Lecture	Test & Assignme nt	L2
ules	Code.#	At the end of the course, student should be able to	reach. Floars	mod Wedned	nt Method	Level
Mod	Course	Course Outcome	Teach. Hours	Instr Method	Assessme	Blooms'

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to . . .

	The end and be delic to employ a apply and course reasoning to the		
Mod	Application Area	CO	Level
ules	Compiled from Module Applications.		
1	Diodes as Rectifiers , Transistors as amplifiers	1	L2
2	Regulators, oscillators	2	L3
3	Rectification, Regulation, Protection	3	L2
4	Fixed voltage regulator, Astable multi vibrator	4	L3
5	Digital encoding, Counters	5	L3
6	Internet access, millitary	6	L2

3. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	- -	Course Outcomes	rse Outcomes Program Outcomes -								_							
Mod	CO.#	At the end of the course student	РО	РΟ	РО	РО								PO	PS	PSI	PS	Lev
ules		should be able to	1	2	3	4	5	6	7	8	9	10	11	12	01	02	Э3	el
1, 2, 4,3	CO.1	Describe the operation of diodes, BJT, FET and Operational Amplifiers.	2	2	1													L2
1, 3,	CO.2	Design and explain the construction of rectifiers, regulators, amplifiers and oscillators.	2	2	1													L3
2	CO.3	Describe general operating principles of SCRs and its application.	2	2	1													L2
1, 4	CO.4	Explain the working and design of Fixed voltage IC regulator using 7805 and astable oscillator using Timer IC 555.	2	2	2													L3
5	CO.5	Explain the different number system and their conversations and construct simple combinational and sequential logic circuits using Flip-Flops.	1	2	1													L3
5	CO.6	Describe the basic principle of operation of communication system and mobile phones.	1		1													L2
			1.6					_	<u> </u>			<u> </u>						-
-	PO, PSO	1.Engineering Knowledge; 2.Problem Analysis; 3.Design / Development of Solutions; 4.Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and Society; 7.Environment and Sustainability; 8.Ethics; 9.Individual and Teamwork; 10.Communication; 11.Project Management and Finance; 12.Life-long Learning; S1.Software Engineering; S2.Data Base Management; S3.Web Design																

4. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					
1					
2					

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation.

-	ulesHoursCIA-1 CIA-2 CIA-3												
	Mod		Title		Teach.		No. of question in Exam					CO	Levels
	ules			Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE			
										Asg			
	1	Semiconductor	diodes	and	12	4	-	-	1	1	2	CO1, CO2,	L2,L3
		applications										CO4	
	2	FET and SCR			8		2	-	1	1	2	CO1, CO3	L2

	Operational amplifiers and applications	8	-	2	-	1	1	2	CO2	L3
4	BJT applications, Feedback amplifiers and oscillators	12	-		2	1	1	2	CO1, CO2, CO4	L2,L3
5	Digital Electronics Fundamentals	13	-	-	2	1	1	2	CO5, CO6	L3, L2
-	Total	53	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	CO	Levels
ules		Marks		2010.0
1	CIA Exam – 1	30	CO1, CO2, CO4	L2,L3
2, 3	CIA Exam – 2	30	CO1, CO2, CO3	L2,L3
4, 5	CIA Exam – 3	30	CO1, CO4, CO5, CO6	L2,L3
1	Assignment - 1	10	CO1, CO2, CO4	L2,L3
2, 3	Assignment - 2	10	CO1, CO2, CO3	L2,L3
4, 5	Assignment - 3	10	CO1, CO4, CO5, CO6	L2,L3
1, 2	Seminar - 1	-	-	-
3, 4	Seminar - 2	-	-	-
5	Seminar - 3	-	-	-
1, 2	Quiz - 1	-	-	-
3, 4	Quiz - 2	-	-	-
5	Quiz - 3	-	-	-
1 - 5	Other Activities – Mini Project	_	-	-
	Final CIA Marks	40	-	-

D1. TEACHING PLAN - 1

	_		
Title:	Semiconductor diodes and applications	Appr Time:	12 Hrs
а	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Describe the operation of diodes, BJT, FET and Operational Amplifiers.	CO1	L2
2	Design and explain the construction of rectifiers, regulators, amplifiers and oscillators.	CO2	L3
3	Explain the working and design of Fixed voltage IC regulator using 7805 and astable oscillator using Timer IC 555.	CO4	L3
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	p-n junction diode, Equivalent circuit of diode,	CO1	L2
2	Zener Diode, Zener diode as a voltage regulator,	CO1	L2
3	Rectification-Half wave rectifier, Full wave rectifier,	CO2	L2
4	Bridge rectifier	CO2	L2
5	Capacitor filter circuit	CO2	L2
6	photodiode	CO1	L2

7	LED	CO1	L2
8	Photocoupler	CO1	L2
9	Numericals on diodes	CO1	L3
10	Numericals on rectifiers	CO2	L3
11	Numericals on rectifiers	CO2	L3
12	78XX series and 7805 Fixed IC voltage regulator.	CO4	L2
C	Application Areas		
-	Students should be able employ / apply the Module learnings to		
1	Diodes as Rectifiers	CO2	L3
2	Regulators	CO4	L2
d	Review Questions		
1	Explain the working of PN junction diode under forward biased and reverse biased condition.	CO1	L2
2	With neat sketch explain the formation of depletion region in unbiased pn junction	CO1	L2
3	Explain the working of photodiode with its VI characteristics.	CO1	L2
4	Explain the different types of diode approximations	CO1	L2
5	Draw and explain VI characteristics of PN junction diode	CO1	L2
6	What is rectifier? Draw the circuit for HWR and explain its working? Derive the expression for I _{DC} efficiency η PIV, RMS value of voltage	CO2	L3
7	Draw the circuit for FWR and explain its working? Derive the expression for I_{DC} efficiency η PIV, RMS value of voltage	CO2	L3
8	Define ripple factor? Show that for HWR ripple factor is 1.21	CO2	L2
9	Explain the avalanche and zener break down with the help of VI characteristics?	CO1	L2
10	Draw the bridge rectifier circuit and explain its operation with waveforms. Show that ripple factor is 0.48?	CO2	L3
11	With relevant waveforms derive expression for I_{DC} , I_{RMS} and riipple factor of a FWR?	CO2	L3
12	Explain how a zener diode can be used as voltage regulator? Also explain its performance?	CO1	L2
13	What is 78XX series? Explain the 7805 fixed IC voltage regulator?	CO4	L2
14	A full wave rectifier uses 2 diodes having internal resistance of 10 Ω each. The transformer RMS secondary voltage from center to each end is 200 V. find Im, Idc, Irms and Vdc if the load is 800 Ω	CO2	L3
e	Experiences	-	-
1	•		
2			

E1. CIA EXAM - 1

a. Model Question Paper - 1

Crs		18ELN24	Sem:	II	Marks:	50	Time:	1hr 45min	nr 45minutes		
Code:											
Cour	ourse: Basic Electronics										
-	-	Note: Answ	Note: Answer all questions, each carry equal marks. Module : 1					Marks	СО	Level	
1	а	Explain the	function o	f zener dic	de voltage reg	ulator with	n neat circuit	8	CO1	L2	
		diagram an	d relevant	equations	for zener curr	ent					
	b	Explain the	Explain the working of center tapped FWR and derive an expression for the					8	CO2	L2	
		following	·								

		i) Average DC Voltage.			
		ii) Rectification efficiency			
	С	Design and draw Zener regulator for the following specification V_0 =5V V_{in} = 12 \P 3 V I_{Zmin} =10 mA I_L =20mA P_Z =500mW. Calculate $R_{min~\&}R_{max}$	9	CO2	L3
		OR			
2	а	Explain the working of PN junction diode under forward biased and reverse biased condition with VI charateristics.	8	CO1	L2
	b	Explain briefly capacitor filter circuit.	8	CO2	L2
	С	For full wave bridge rectifier derive V_{dc} and V_{rms} values.	9	CO2	L2
3	а	Explain the functioning of the following: I) photo diode ii) LED iii) photo coupler	8	CO1	L2
	b	Show that the ripple factor of half-wave rectifier is 1.21 and efficiency is 40.5%	8	CO2	L2
	С	Define 78xx series and explain the 7805 fixed IC voltage regulator?	9	CO4	L2
		OR			
4	а	What is semiconductor diode? Explain the different equivalent circuits of diode.	8	CO1	L2
	b	Explain the operation of half wave rectifier with capacitor filter with neat circuit diagram and waveforms.	8	CO2	L2
	С	Explain the functional block diagram of 78XX series voltage regulator.	9	CO4	L2

b. Assignment -1

		Model	Assignmen	t Question	S			
Crs Code:	18ELN24 Sem:	II	Marks:	10	Time:	90 – 120	minutes	3
Course:	Basic Electronics			Module	: 1			
SNo		Assignme	nt Descripti	on		Marks	СО	Level
,	Design and draw Zener V ₀ =5V V _{in} = 12.3 V Calculate R _{min &} R _{max}	-				10	CO2	L3
	Explain the working of confollowing i) Average DC Voltage. ii) Rectification efficience		d FWR and	derive an	expression for th	e 10	CO2	L2
	What is voltage regulato can be used as voltage	•	necessary?	' Explain h	ow zener diode	10	CO2	L2
	Calculate the output DC oad resistance= 100Ω avoltage = 300 sint wt.	•	•		•	10	CO2	L3
5	Explain the operation of	Zener volta	ge regulatoi	with load		10	CO2	L2
6	Explain the working of H					e 10	CO2	L2

	i) Average DC Voltage.ii) Rectification efficiency			
7	Draw the circuit of FWR and show that ripple factor is equal to 0.48 and efficiency is 81%	10	CO2	L3
8	With neat circuit diagram and waveform explain the working of full wave bridge rectifier.	10	CO2	L2
9	Explain briefly capacitor filter circuit.	10	CO2	L2
10	With a neat circuit diagram and waveforms, explain the working of a half wave rectifier.	10	CO2	L2
11	Write a note on voltage regulator circuit.	10	CO2	L2
12	Explain the function of zener diode voltage regulator with neat circuit diagram and relevant equations for zener current	10	CO2	L2
13	Prove that ripple factor of HWR rectifier is 1.21	10	CO2	L3
14	Define line regulation and load regulator	10	CO2	L2
15	Discuss the performance of zener diode in terms of source and load effects	10	CO1	L2
16	Explain the functioning of the following: I) photo diode ii) LED iii) photo coupler	10	CO1	L2
17	Define 78xx series and explain the 7805 fixed IC voltage regu/lator?	10	CO2	L2
18	Explain the function of zener diode voltage regulator with neat circuit diagram and relevant equations for zener current	8	CO1	L2
19	Explain the working of PN junction diode under forward biased and reverse biased condition with VI charateristics.	8	CO1	L2
20	Explain the functioning of the following: I) photo diode ii) LED iii) photo coupler	8	CO1	L2

D2. TEACHING PLAN - 2

Title:	FET and SCR	Appr Time:	8 Hrs
а	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Describe the operation of diodes, BJT, FET and Operational Amplifiers.	CO1	L2
2	Describe general operating principles of SCRs and its application.	CO3	L2
b	Course Schedule	-	-
lass No	Portion covered per hour	-	-
13	FET and SCR: Introduction to JFET	CO1	L2
14	construction and operation, JFET drain characteristics and parameters	CO1	L2
15	JFET transfer characteristics, Square law expression ID , Input resistance,	CO1	L2
16	MOSFET: Depletion and enhancement type construction, operation,	CO1	L2
17	characteristics and symbols, CMOS	CO1	L2
18	Silicon Controlled Rectifier- two transistor model,	CO3	L2
19	Switching action characteristics and phase control application	CO3	L3
20	Numericals	CO3	L3
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	home appliances including lighting, temperature control, fan speed regulation, heating and alarm activation	CO1	L3
2	Used in devices where control of high power is demanded such as lamp dimming, power regulators and motor control and in	CO3	L3

d	Review Questions	-	-
-			
1	Explain the construction and operation of junction field effect transistor?	CO1	L2
2	Draw and explain the JFET drain characteristics and parameters	CO1	L2
3	Draw and explain JFET transfer characteristics	CO1	L2
4	Derive Square law expression I _D , and also find the Input resistance?	CO1	L2
5	Construct depletion and enhancement type MOSFET.	CO1	L2
6	Explain the operation, characteristics and symbols of MOSFET	CO1	L2
7	Write a short note on CMOS	CO1	L2
8	Define Silicon Controlled Rectifier. Draw the two transistor equivalent model and	CO3	L2
	explain with its VI characteristics.		
9	Explain the Switching action characteristics of SCR	CO3	L2
10	Explain the Phase control application of SCR	CO3	L2
е	Experiences	-	-
1			
2			

Title:	Operational Amplifiers and Applications	Appr Time:	8 Hrs
а	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Describe the operation of diodes, BJT, FET and Operational Amplifiers.	CO1	L2
2	Design and explain the construction of rectifiers, regulators, amplifiers and oscillators.	CO2	L3
b	Course Schedule		
Class No		-	-
1	Introduction to op-amp, Op-amp input modes.	CO1	L2
2	Op-amp parameters-CMRR, Input offset voltage and current.	CO1	L2
3	Op-amp parameters- Input bias current, Input and output impedance , Slew rate	CO1	L2
4	Inverting amplifier	CO2	L3
5	Non-inverting amplifier	CO2	L3
6	Summer, Voltage follower	CO2	L3
7	Integrator, differentiator.	CO2	L3
8	Comparator.	CO2	L3
C	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
	Used as voltage follower, selective inversion circuit, active rectifier, integrator, filter and comparator in medical cardiographs	CO2	L3
	Analog computers, analog to digital converters and wave-shaping circuits	CO2	L3
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	What is operational amplifier? Explain the equivalent circuite of op-amp.	CO1	L2
2	List the ideal and practical characteristics of op-amp.	CO1	L1
3	Explain inverting and Non-inverting mode of op-amp.	CO2	L2
4	Distinguish between open loop and closed loop configuration of op-amp.	CO2	L2
5	What is voltage follower w.r.t op-amp? Explain the circuit of voltage follower.	CO2	L2
6	What is op-amp summer circuit? Explain the op-amp based summer circuit with	CO2	L2

	derivation to output voltage?		
7	Explain op-amp based subtractor circuit and derive an expression for output voltage.	CO2	L2
8	Show how op-amp can be used as integrator and derive an expression for output voltage.	CO2	L2
9	Explain the op-amp based differentiator circuit and derive an expression for output voltage.	CO2	L2
10	Explain how op-amp can be used as comparator.	CO2	L2
е	Experiences	-	-
1			
2			

E2. CIA EXAM - 2

a. Model Question Paper - 2

Crs		18ELN24 Sem: II Marks: 50 Time:							1hr 45minutes			
Code	e:											
Cour	se:	Basic Electr	onics									
-	-	Note: Answe	er all questi	ons, each car	ry equal mai	ks. Module :	2,3	Marks	co	Level		
1	а	Draw the dr	ain characte	eristics of n-cl	nannel JFET	and explain	it?	8	CO1	L2		
	b	Derive Squa	are law expr	ession I _D , and	d also find th	e Input resis	tance?	8	CO1	L3		
	С			equivalent ci ain various re		•	I	9	CO3	L2		
2	а	Construct de	epletion and		8	CO1	L3					
	b	Explain the	operation,	8	CO1	L3						
	С		Draw the two transistor equivalent circuit of SCR . Also plot VI characteristics and explain various regions of operation							L2		
3	а	What is ope	rational am	plifier? Explai	n the equiva	lent circuit of	op-amp.	8	CO1	L2		
	b	Show how output volta		be used as	integrator a	nd derive an	expression	for 8	CO2	L2		
	С		-	voltage of a $R_3 = 500$ kΩ	-	_	-		CO2	L3		
					OR							
4	а	Explain the output volta		sed differenti	ator circuit a	nd derive an	expression	for 8	CO2	L2		
	b	Explain hov	v op-amp ca	an be used as	comparator			8	CO1	L2		
	С	1 -		uit using op where V ₁ , V ₂	•			of 9	CO2	L3		

b. Assignment - 2

				М	odel Assignmeı	nt Question	ns			
Crs C	ode:	ode: 18ELN24 Sem: II Marks: 10 Time:		90 – 120 minutes						
Cours	course: Basic Electronics Module : 2, 3									
SNo	SNo Assignment Description									Level
1	Draw the drain characteristics of n-channel JFET and explain it?								CO1	L2
1	Draw the two transistor equivalent circuit of SCR . Also plot VI characteristics and explain various regions of operation									

What are the applications of SCR. Explain 4 Draw the circuit diagram to show how an SCR can be triggered by application of a pulse to the gate terminal. Sketch the circuit waveforms and explain its operation? 5 Sketch typical SCR forward and reverse characteristics. Identify all regions of a pulse to the gate terminal. Sketch the circuit waveforms and explain its operation? 6 Draw the drain characteristics of penannel JFET and explain it? 10 CO1 L2 7 Explain the construction and operation of junction field effect transistor? 10 CO1 L3 8 Draw and explain the JFET transfer characteristics and parameters 10 CO1 L3 10 Derive Square law expression I ₀ , and also find the Input resistance? 11 Construct depletion and enhancement type MOSFET. 12 Explain the operation, characteristics and symbols of MOSFET. 13 Write a short note on CMOS 14 Define Silicon Controlled Rectifier. Draw the two transistor equivalent model and explain with its VI characteristics. 15 Explain the Switching action characteristics of SCR 10 CO3 L3 17 What is operational amplifier? Explain the equivalent circuit of op-amp. 10 CO1 L2 18 List the Ideal and practical characteristics of Op-amp. 10 CO1 L2 10 Explain inverting and Non-inverting mode of op-amp. 10 CO2 L2 10 What is voltage follower w.r.t op-amp? Explain the ecrivation to output voltage? 23 Explain op-amp based subtractor circuit and derive an expression for output voltage. 24 Show how op-amp can be used as integrator and derive an expression for output voltage. 25 Explain the Op-amp based differentiator circuit and derive an expression for output voltage. 26 Explain op-amp pased differentiator circuit and derive an expression for output voltage. 27 Design an adder circuit using op amp to obtain an output voltage of 10 CO2 L2 28 What is on op-amp. Explain the eleal characteristics of the op-amp? 10 CO2 L2 29 Define the following in case of a practical op-amp i) Siew rate ii) CMRR iii) OCO2 L2 20 Define the following in case of a practical op-amp i) Siew rate					
of a pulse to the gate terminal. Sketch the circuit waveforms and explain its operation? Sketch typical SCR forward and reverse characteristics. Identify all regions of characteristics and all important current and voltage level? Draw the drain characteristics of p-channel JFET and explain it? Explain the construction and operation of junction field effect transistor? To explain the construction and operation of junction field effect transistor? Draw and explain the JFET drain characteristics Draw and explain JFET transfer characteristics Construct depletion and enhancement type MOSFET. Construct depletion and enhancement type MOSFET. Explain the operation, characteristics and symbols of MOSFET Define Silicon Controlled Rectifier. Draw the two transistor equivalent model and explain with its VI characteristics of SCR Define Silicon Controlled Rectifier. Draw the two transistor equivalent model and explain with its VI characteristics of SCR Define Silicon Controlled Rectifier. Draw the two transistor equivalent model and explain with its VI characteristics of SCR Define Silicon Controlled Rectifier. Draw the two transistor equivalent model and explain with its VI characteristics of SCR Desplain the Switching action characteristics of SCR Desplain the Switching action characteristics of SCR Desplain the Phase control application of SCR Desplain the Phase control application of SCR Desplain and practical characteristics of op-amp. Desplain the Phase control application of SCR Desplain inverting and Non-inverting mode of op-amp. Desplain inverting and Non-inverting mode of op-amp. Desplain inverting and Non-inverting mode of op-amp. Desplain op-amp based subtractor circuit and derive an expression for output voltage. What is op-amp summer circuit? Explain the op-amp based summer circuit with derivation	3	What are the applications of SCR. Explain	10	CO3	L2
characteristics and all important current and voltage level? 6 Draw the drain characteristics of p-channel JFET and explain it? 7 Explain the construction and operation of junction field effect transistor? 8 Draw and explain the JFET drain characteristics and parameters 10 CO1 L3 9 Draw and explain in FET transfer characteristics 10 Derive Square law expression I ₀ , and also find the Input resistance? 10 CO1 L3 11 Construct depletion and enhancement type MOSFET. 12 Explain the operation, characteristics and symbols of MOSFET 13 Write a short note on CMOS 14 Define Silicon Controlled Rectifier. Draw the two transistor equivalent model 15 Explain in the Videracteristics. 16 Explain the Phase control application of SCR 17 What is operational amplifier? Explain the equivalent circuit of op-amp. 18 List the ideal and practical characteristics of op-amp. 19 Explain inverting and Non-inverting mode of op-amp. 10 CO2 L2 10 Distinguish between open loop and closed loop configuration of op-amp. 10 CO2 L2 10 What is op-amp summer circuit? Explain the op-amp based summer circuit with derivation to output voltage? 23 Explain op-amp based subtractor circuit and derive an expression for output voltage. 24 Show how op-amp can be used as integrator and derive an expression for output voltage. 25 Explain the op-amp based differentiator circuit and derive an expression for output voltage. 26 Explain in how op-amp can be used as comparator. 10 CO2 L2 27 Design an adder circuit using op amp to obtain an output voltage of 10 CO2 L2 28 What is an op-amp. Explain the op-amp? 29 Define the following in case of a practical op-amp? 10 CO2 L2 29 Define the following in case of a practical op-amp? 10 CO2 L2 20 Distinguish between Explain the op-amp? 10 CO2 L2 21 What is op-amp based subtractor circuit and derive an expression for output voltage. 20 Explain in how op-amp can be used as comparator. 21 Design an adder circuit using op amp to obtain an output voltage of 10 CO2 L2 22 Design an adder circui	4	of a pulse to the gate terminal. Sketch the circuit waveforms and explain its	10	CO3	L2
Explain the construction and operation of junction field effect transistor?	5		10	CO3	L2
8 Draw and explain the JFET drain characteristics and parameters 10 CO1 L3 9 Draw and explain JFET transfer characteristics 10 CO1 L3 10 Derive Square law expression I _D , and also find the Input resistance? 10 CO1 L3 11 Construct depletion and enhancement type MOSFET. 10 CO1 L3 12 Explain the operation, characteristics and symbols of MOSFET 10 CO1 L3 13 Write a short note on CMOS 10 CO1 L3 14 Define Silicon Controlled Rectifier. Draw the two transistor equivalent model and explain with its VI characteristics. 15 Explain the Switching action characteristics of SCR 10 CO3 L3 16 Explain the Phase control application of SCR 10 CO3 L3 17 What is operational amplifier? Explain the equivalent circuit of op-amp. 10 CO1 L2 18 List the ideal and practical characteristics of op-amp. 10 CO1 L2 19 Explain inverting and Non-inverting mode of op-amp. 10 CO2 L2 20 Distinguish between open loop and closed loop configuration of op-amp. 10 CO2 L2 21 What is voltage follower w.r.t op-amp? Explain the circuit of voltage follower. 10 CO2 L2 22 What is op-amp summer circuit? Explain the op-amp based summer circuit with derivation to output voltage? 23 Explain op-amp based subtractor circuit and derive an expression for output voltage. 24 Show how op-amp can be used as integrator and derive an expression for output voltage. 25 Explain op-amp based differentiator circuit and derive an expression for output voltage. 26 Explain how op-amp can be used as comparator. 10 CO2 L2 27 Design an adder circuit using op amp to obtain an output voltage of V _x =2[0.1V ₁ +0.5V ₂ +2V ₃] where V ₁ , V ₂ and V ₃ are input voltages. 28 What is an op-amp. Explain the ideal characteristics of the op-amp? 10 CO2 L2 28 What is an op-amp. Explain the ideal characteristics of the op-amp? 10 CO2 L2 29 Define the following in case of a practical op-amp i) Slew rate ii) CMRR iii) 10 CO2 L2 29 Define the following in case of a practical op-amp i) Slew rate ii) CMRR iii) 10 CO2 L2 29 Use the following in case of a practical op-amp i) Slew rate ii) CMRR iii) 10	6	Draw the drain characteristics of p-channel JFET and explain it?	10	CO1	L2
9 Draw and explain JFET transfer characteristics 10 Derive Square law expression I ₀ , and also find the Input resistance? 11 Construct depletion and enhancement type MOSFET. 12 Explain the operation, characteristics and symbols of MOSFET 13 Write a short note on CMOS 14 Define Silicon Controlled Rectifier. Draw the two transistor equivalent model 15 Explain the Switching action characteristics of SCR 16 Explain the Switching action characteristics of SCR 17 What is operational amplifier? Explain the equivalent circuit of op-amp. 18 List the ideal and practical characteristics of op-amp. 19 Explain inverting and Non-inverting mode of op-amp. 10 CO1 L2 10 Distinguish between open loop and closed loop configuration of op-amp. 11 CO2 L2 12 What is op-amp summer circuit? Explain the op-amp based summer circuit with derivation to output voltage? 19 Explain op-amp based subtractor circuit and derive an expression for output voltage. 20 Explain op-amp based differentiator circuit and derive an expression for output voltage. 21 Explain the op-amp based differentiator circuit and derive an expression for output voltage. 22 Explain the op-amp based differentiator circuit and derive an expression for output voltage. 23 Explain the op-amp based differentiator circuit and derive an expression for output voltage. 24 Show how op-amp can be used as comparator. 25 Explain the op-amp based differentiator circuit and derive an expression for output voltage. 26 Explain the op-amp based differentiator circuit and derive an expression for output voltage. 27 Design an adder circuit using op amp to obtain an output voltage of 10 CO2 L2 CO7 Set Vo.=2[0.1V.+0.5V.+2V.] where V1, V2 and V3 are input voltages. 28 What is an op-amp. Explain the ideal characteristics of the op-amp? 29 Define the following in case of a practical op-amp i) Slew rate ii) CMRR iii) 10 CO2 L2 CO7 Set voltages iv) PSRR 30 Calculate the output voltage of a three input summing amplifier given for the following in case of a practical op-amp i) Slew rate ii) CMRR iii	7	Explain the construction and operation of junction field effect transistor?	10	CO1	L3
Derive Square law expression I ₀ , and also find the Input resistance? 10 CO1 L3	8	Draw and explain the JFET drain characteristics and parameters	10	CO1	L3
11 Construct depletion and enhancement type MOSFET. 12 Explain the operation, characteristics and symbols of MOSFET 13 Write a short note on CMOS 14 Define Silicon Controlled Rectifier. Draw the two transistor equivalent model and explain with its VI characteristics. 15 Explain the Switching action characteristics of SCR 16 Explain the Phase control application of SCR 17 What is operational amplifier? Explain the equivalent circuit of op-amp. 18 List the ideal and practical characteristics of op-amp. 19 Explain inverting and Non-inverting mode of op-amp. 10 CO1 L2 19 Explain inverting and Non-inverting mode of op-amp. 10 CO2 L2 10 Distinguish between open loop and closed loop configuration of op-amp. 10 CO2 L2 10 What is op-amp summer circuit? Explain the op-amp based summer circuit with derivation to output voltage? 21 Explain op-amp based subtractor circuit and derive an expression for output voltage. 22 Explain op-amp based differentiator circuit and derive an expression for output voltage. 23 Explain the op-amp based differentiator circuit and derive an expression for output voltage. 24 Show how op-amp can be used as integrator and derive an expression for output voltage. 25 Explain the op-amp based differentiator circuit and derive an expression for output voltage. 26 Explain how op-amp can be used as comparator. 27 Design an adder circuit using op amp to obtain an output voltage of v₀-2[0.1V₁+0.5V₂+2V₃] whwre V₁, V₂ and V₃ are input voltages. 28 What is an op-amp. Explain the ideal characteristics of the op-amp? 29 Define the following in case of a practical op-amp i) Slew rate ii) CMRR iii) Occo L2 29 Design an adder circuit using op amp to obtain an output voltage of Columbia of Scalar and Scalar a	9	Draw and explain JFET transfer characteristics	10	CO1	L3
12 Explain the operation, characteristics and symbols of MOSFET 10 CO1 L3 13 Write a short note on CMOS 10 CO1 L3 14 Define Silicon Controlled Rectifier. Draw the two transistor equivalent model and explain with its VI characteristics. 15 Explain the Switching action characteristics of SCR 10 CO3 L3 16 Explain the Phase control application of SCR 10 CO3 L3 17 What is operational amplifier? Explain the equivalent circuit of op-amp. 10 CO1 L2 18 List the ideal and practical characteristics of op-amp. 10 CO1 L2 19 Explain inverting and Non-inverting mode of op-amp. 10 CO2 L2 20 Distinguish between open loop and closed loop configuration of op-amp. 10 CO2 L2 21 What is voltage follower w.r.t op-amp? Explain the circuit of voltage follower. 10 CO2 L2 22 What is op-amp summer circuit? Explain the op-amp based summer circuit with occupate derivation to output voltage? 23 Explain op-amp based subtractor circuit and derive an expression for output voltage. 24 Show how op-amp can be used as integrator and derive an expression for output voltage. 25 Explain the op-amp based differentiator circuit and derive an expression for output voltage. 26 Explain how op-amp can be used as comparator. 10 CO2 L2 27 Design an adder circuit using op amp to obtain an output voltage of 10 CO2 L2 28 What is an op-amp. Explain the ideal characteristics of the op-amp? 10 CO1 L2 29 Define the following in case of a practical op-amp i) Slew rate ii) CMRR iii) 10 CO2 L2 29 Define the following in case of a practical op-amp i) Slew rate ii) CMRR iii) 10 CO2 L2 29 Using an adder circuit using op amp to obtain an output voltage of 10 CO2 L2 29 Using how op-amp explain the ideal characteristics of the op-amp? 10 CO1 L2 29 Define the following in case of a practical op-amp i) Slew rate ii) CMRR iii) 10 CO2 L2 29 Using the op-amp sexplain the ideal characteristics of the op-amp? 10 CO1 L2 29 Using the op-amp sexplain the ideal characteristics of the op-amp? 10 CO2 L2 30 What is operational amplifier? Explain the equivalent circuit of op-amp. 10 CO2 L	10	Derive Square law expression I _D , and also find the Input resistance?	10	CO1	L3
12Explain the operation, characteristics and symbols of MOSFET10CO1L313Write a short note on CMOS10CO1L314Define Silicon Controlled Rectifier. Draw the two transistor equivalent model and explain with its VI characteristics.10CO3L315Explain the Phase control application of SCR10CO3L316Explain the Phase control application of SCR10CO3L317What is operational amplifier? Explain the equivalent circuit of op-amp.10CO1L218List the ideal and practical characteristics of op-amp.10CO1L219Explain inverting and Non-inverting mode of op-amp.10CO2L220Distinguish between open loop and closed loop configuration of op-amp.10CO2L221What is voltage follower w.r.t op-amp? Explain the circuit of voltage follower.10CO2L222What is op-amp summer circuit? Explain the op-amp based summer circuit with derivation to output voltage?CO2L223Explain op-amp based subtractor circuit and derive an expression for output voltage.CO2L224Show how op-amp can be used as integrator and derive an expression for output voltage.CO2L225Explain the op-amp based differentiator circuit and derive an expression for output voltage.10CO2L226Explain how op-amp can be used as comparator.10CO2L227Design an adder circuit using op amp to obtain an output voltage of the op	11	Construct depletion and enhancement type MOSFET.	10	CO1	L3
13 Write a short note on CMOS 14 Define Silicon Controlled Rectifier. Draw the two transistor equivalent model and explain with its VI characteristics. 15 Explain the Switching action characteristics of SCR 10 CO3 L3 16 Explain the Phase control application of SCR 10 CO3 L3 17 What is operational amplifier? Explain the equivalent circuit of op-amp. 10 CO1 L2 18 List the ideal and practical characteristics of op-amp. 10 CO1 L2 19 Explain inverting and Non-inverting mode of op-amp. 10 CO2 L2 20 Distinguish between open loop and closed loop configuration of op-amp. 10 CO2 L2 21 What is voltage follower w.r.t op-amp? Explain the circuit of voltage follower. 22 What is op-amp summer circuit? Explain the op-amp based summer circuit with derivation to output voltage? 23 Explain op-amp based subtractor circuit and derive an expression for output voltage. 24 Show how op-amp can be used as integrator and derive an expression for output voltage. 25 Explain how op-amp based differentiator circuit and derive an expression for output voltage. 26 Explain how op-amp can be used as comparator. 27 Design an adder circuit using op amp to obtain an output voltage of to CO2 L2 28 What is an op-amp. Explain the ideal characteristics of the op-amp? 29 Define the following in case of a practical op-amp i) Slew rate ii) CMRR iii) 20 CO2 L2 21 Off set voltages iv) PSRR 30 Calculate the output voltage of a three input summing amplifier given $R_1 = 200K\Omega$, $R_2 = 250K\Omega$, $R_3 = 500k\Omega$ and $R_1 = 1M\Omega$. $V_1 = -2V$, $V_2 = 2V$, $V_3 = 1V$ 31 Write any four advantages of negative feedback amplifiers? 22 What is operational amplifier? Explain the equivalent circuit of op-amp. 33 Explain op-amp based subtractor circuit and derive an expression for output voltage. 34 Show how op-amp can be used as integrator and derive an expression for output voltage. 35 Show how op-amp can be used as integrator and derive an expression for output voltage.	12		10	CO1	L3
14 Define Silicon Controlled Rectifier. Draw the two transistor equivalent model and explain with its VI characteristics. 15 Explain the Switching action characteristics of SCR 16 Explain the Phase control application of SCR 17 What is operational amplifier? Explain the equivalent circuit of op-amp. 18 List the ideal and practical characteristics of op-amp. 19 Explain inverting and Non-inverting mode of op-amp. 10 CO2 L2 19 Explain inverting and Non-inverting mode of op-amp. 10 CO2 L2 20 Distinguish between open loop and closed loop configuration of op-amp. 10 CO2 L2 21 What is voltage follower w.r.t op-amp? Explain the circuit of voltage follower. 22 What is op-amp summer circuit? Explain the op-amp based summer circuit with derivation to output voltage? 23 Explain op-amp based subtractor circuit and derive an expression for output output voltage. 24 Show how op-amp based differentiator circuit and derive an expression for output voltage. 25 Explain the op-amp based differentiator circuit and derive an expression for Design an adder circuit using op amp to obtain an output voltage of 10 CO2 L2 output voltage. 26 Explain how op-amp can be used as comparator. 27 Design an adder circuit using op amp to obtain an output voltage of 10 CO2 L2 output voltage. 28 What is an op-amp. Explain the ideal characteristics of the op-amp? 10 CO1 L2 Off set voltages iv) PSRR 30 Calculate the output voltage of a three input summing amplifier given R;=200KΩ, R;=250KΩ, R;=500KΩ and R;=1MΩ, V;=-2v, V;=2v, V;=1v 31 Write any four advantages of negative feedback amplifiers? 32 What is operational amplifier? Explain the equivalent circuit of op-amp. 33 Explain op-amp based subtractor circuit and derive an expression for output voltage. 34 Show how op-amp can be used as integrator and derive an expression for output voltage. 35 Show how op-amp can be used as integrator and derive an expression for output voltage.	13		10	CO1	L3
Explain the Switching action characteristics of SCR	14	·			
Explain the Phase control application of SCR	15		10	CO3	L3
17What is operational amplifier? Explain the equivalent circuit of op-amp.10CO1L218List the ideal and practical characteristics of op-amp.10CO1L219Explain inverting and Non-inverting mode of op-amp.10CO2L220Distinguish between open loop and closed loop configuration of op-amp.10CO2L221What is voltage follower w.r.t op-amp? Explain the circuit of voltage follower.10CO2L222What is op-amp summer circuit? Explain the op-amp based summer circuit with derivation to output voltage?10CO2L223Explain op-amp based subtractor circuit and derive an expression for output voltage.10CO2L224Show how op-amp can be used as integrator and derive an expression for output voltage.10CO2L225Explain the op-amp based differentiator circuit and derive an expression for output voltage.10CO2L226Explain how op-amp can be used as comparator.10CO2L227Design an adder circuit using op amp to obtain an output voltage of V_0 =2[0.1V,+0.5V ₂ +2V ₃] whwre V ₁ , V ₂ and V ₃ are input voltages.10CO2L328What is an op-amp. Explain the ideal characteristics of the op-amp?10CO1L229Define the following in case of a practical op-amp i) Slew rate ii) CMRR iii)10CO2L231Write any four advantages of negative feedback amplifiers?10CO2L232What is operational amplifier? Explain the equivalen					
18 List the ideal and practical characteristics of op-amp. 19 Explain inverting and Non-inverting mode of op-amp. 10 CO2 L2 20 Distinguish between open loop and closed loop configuration of op-amp. 10 CO2 L2 21 What is voltage follower w.r.t op-amp? Explain the circuit of voltage follower. 22 What is op-amp summer circuit? Explain the op-amp based summer circuit with derivation to output voltage? 23 Explain op-amp based subtractor circuit and derive an expression for output voltage. 24 Show how op-amp can be used as integrator and derive an expression for output voltage. 25 Explain the op-amp based differentiator circuit and derive an expression for output voltage. 26 Explain how op-amp can be used as comparator. 27 Design an adder circuit using op amp to obtain an output voltage of V _o =2[0.1V ₁ +0.5V ₂ +2V ₃] where V ₁ , V ₂ and V ₃ are input voltages. 28 What is an op-amp. Explain the ideal characteristics of the op-amp? 29 Define the following in case of a practical op-amp i) Slew rate ii) CMRR iii) OCO2 L2 29 Define the following in case of a practical op-amp i) Slew rate ii) CMRR iii) OCO2 L2 29 Off set voltages iv) PSRR 30 Calculate the output voltage of a three input summing amplifier given R ₁ =200kΩ, R ₂ = 250kΩ, R ₃ = 500kΩ and R _f = 1MΩ, V ₁ = -2v, V ₂ =2 v, V ₃ =1v 31 Write any four advantages of negative feedback amplifiers? 32 What is operational amplifier? Explain the equivalent circuit of op-amp. 33 Show how op-amp can be used as integrator and derive an expression for output voltage. 34 Show how op-amp can be used as integrator and derive an expression for output voltage. 35 Show how op-amp based differentiator circuit and derive an expression for output voltage.	17				
19Explain inverting and Non-inverting mode of op-amp.10CO2L220Distinguish between open loop and closed loop configuration of op-amp.10CO2L221What is voltage follower w.r.t op-amp? Explain the circuit of voltage follower.10CO2L222What is op-amp summer circuit? Explain the op-amp based summer circuit with derivation to output voltage?10CO2L223Explain op-amp based subtractor circuit and derive an expression for output voltage.10CO2L224Show how op-amp can be used as integrator and derive an expression for output voltage.10CO2L225Explain the op-amp based differentiator circuit and derive an expression for output voltage.10CO2L226Explain how op-amp can be used as comparator.10CO2L227Design an adder circuit using op amp to obtain an output voltage of V_0 =2[0.1V ₁ +0.5V ₂ +2V ₃] whwre V ₁ , V ₂ and V ₃ are input voltages.10CO2L328What is an op-amp. Explain the ideal characteristics of the op-amp?10CO1L229Define the following in case of a practical op-amp i) Slew rate ii) CMRR iii)10CO2L330Calculate the output voltage of a three input summing amplifier given R_1 =200kΩ, R_2 = 250kΩ, R_3 = 500kΩ and R_1 = 1MΩ, V_1 = -2v, V_2 =2 v, V_3 =1v10CO2L331Write any four advantages of negative feedback amplifiers?10CO2L232What is operational amplifier? Explain the equivalent circuit of op-amp. <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
20 Distinguish between open loop and closed loop configuration of op-amp. 10 CO2 L2 21 What is voltage follower w.r.t op-amp? Explain the circuit of voltage follower. 10 CO2 L2 22 What is op-amp summer circuit? Explain the op-amp based summer circuit with 10 CO2 L2 derivation to output voltage? 10 CO2 L2 voltage. 10 CO2 L2 voltage. 11 CO2 Explain op-amp based subtractor circuit and derive an expression for output voltage. 12 Show how op-amp can be used as integrator and derive an expression for output voltage. 13 Explain the op-amp based differentiator circuit and derive an expression for output voltage. 14 Explain how op-amp can be used as comparator. 10 CO2 L2 CO2 Explain how op-amp can be used as comparator. 10 CO2 L2 CO3 Design an adder circuit using op amp to obtain an output voltage of 10 CO2 L3 V _o =2[0.1V ₁ +0.5V ₂ +2V ₃] whwre V ₁ , V ₂ and V ₃ are input voltages. 14 CO3 L2 CO4 Define the following in case of a practical op-amp i) Slew rate ii) CMRR iii) 10 CO2 L2 CO4 CO4 CO4 CO4 CO5					
 What is voltage follower w.r.t op-amp? Explain the circuit of voltage follower. What is op-amp summer circuit? Explain the op-amp based summer circuit with derivation to output voltage? Explain op-amp based subtractor circuit and derive an expression for output voltage. Show how op-amp can be used as integrator and derive an expression for output voltage. Explain the op-amp based differentiator circuit and derive an expression for output voltage. Explain how op-amp can be used as comparator. Explain how op-amp can be used as comparator. Design an adder circuit using op amp to obtain an output voltage of V_o=2[0.1V₁+0.5V₂+2V₃] whwre V₁, V₂ and V₃ are input voltages. What is an op-amp. Explain the ideal characteristics of the op-amp? Off set voltages iv) PSRR Calculate the output voltage of a three input summing amplifier given R₁=200KΩ, R₂ = 250KΩ, R₃ = 500kΩ and R_f = 1MΩ. V₁= -2v, V₂=2 v, V₃=1v Write any four advantages of negative feedback amplifiers? What is operational amplifier? Explain the equivalent circuit of op-amp. What is op-amp based subtractor circuit and derive an expression for output voltage. Show how op-amp can be used as integrator and derive an expression for output voltage. Explain the op-amp based differentiator circuit and derive an expression for 10 CO2 L2 output voltage. Explain the op-amp based differentiator circuit and derive an expression for 10 CO2 L2 					
 What is op-amp summer circuit? Explain the op-amp based summer circuit with derivation to output voltage? Explain op-amp based subtractor circuit and derive an expression for output voltage. Show how op-amp can be used as integrator and derive an expression for output voltage. Explain the op-amp based differentiator circuit and derive an expression for output voltage. Explain how op-amp can be used as comparator. Design an adder circuit using op amp to obtain an output voltage of Vo=2[0.1V+0.5V₂+2V₃] whwre V₁, V₂ and V₃ are input voltages. What is an op-amp. Explain the ideal characteristics of the op-amp? Define the following in case of a practical op-amp i) Slew rate ii) CMRR iii) CO2 L2 Off set voltages iv) PSRR Calculate the output voltage of a three input summing amplifier given R₁=200kΩ, R₂ = 250kΩ, R₃ = 500kΩ and R₁ = 1MΩ, V₁= -2v, V₂=2 v, V₃=1v Write any four advantages of negative feedback amplifiers? CO2 L2 What is operational amplifier? Explain the equivalent circuit of op-amp. CO3 CO2 L2 Explain op-amp based subtractor circuit and derive an expression for output voltage. Show how op-amp can be used as integrator and derive an expression for output voltage. Explain the op-amp based differentiator circuit and derive an expression for D CO2 L2 Explain the op-amp based differentiator circuit and derive an expression for D CO2 L2 					
Explain op-amp based subtractor circuit and derive an expression for output voltage. 24 Show how op-amp can be used as integrator and derive an expression for output voltage. 25 Explain the op-amp based differentiator circuit and derive an expression for output voltage. 26 Explain how op-amp can be used as comparator. 27 Design an adder circuit using op amp to obtain an output voltage of V_0 =2[0.1 V_1 +0.5 V_2 +2 V_3] whwre V_1 , V_2 and V_3 are input voltages. 28 What is an op-amp. Explain the ideal characteristics of the op-amp? 29 Define the following in case of a practical op-amp i) Slew rate ii) CMRR iii) 10 CO2 L2 COff set voltages iv) PSRR 30 Calculate the output voltage of a three input summing amplifier given R_1 =200kΩ, R_2 = 250kΩ, R_3 = 500kΩ and R_f = 1MΩ. V_1 = -2 V_1 , V_2 =2 V_1 , V_3 =1 V_1 31 Write any four advantages of negative feedback amplifiers? 32 What is operational amplifier? Explain the equivalent circuit of op-amp. 33 Explain op-amp based subtractor circuit and derive an expression for output voltage. 39 Show how op-amp can be used as integrator and derive an expression for 10 CO2 L2 coutput voltage. 40 Explain the op-amp based differentiator circuit and derive an expression for 10 CO2 L2		What is op-amp summer circuit? Explain the op-amp based summer circuit with		_	
Show how op-amp can be used as integrator and derive an expression for output voltage. Explain the op-amp based differentiator circuit and derive an expression for output voltage. Explain how op-amp can be used as comparator. Design an adder circuit using op amp to obtain an output voltage of V ₀ =2[0.1V ₁ +0.5V ₂ +2V ₃] whwre V ₁ , V ₂ and V ₃ are input voltages. What is an op-amp. Explain the ideal characteristics of the op-amp? Define the following in case of a practical op-amp i) Slew rate ii) CMRR iii) Off set voltages iv) PSRR Calculate the output voltage of a three input summing amplifier given R ₁ =200kΩ, R ₂ = 250KΩ, R ₃ = 500kΩ and R _f = 1MΩ. V ₁ = -2v, V ₂ =2 v, V ₃ =1v Write any four advantages of negative feedback amplifiers? What is operational amplifier? Explain the equivalent circuit of op-amp. What is operational amplifier? Explain the equivalent circuit of op-amp. Sexplain op-amp based subtractor circuit and derive an expression for output voltage. Show how op-amp can be used as integrator and derive an expression for output voltage. Explain the op-amp based differentiator circuit and derive an expression for 10 CO2 L2 Explain the op-amp based differentiator circuit and derive an expression for 10 CO2 L2	23	Explain op-amp based subtractor circuit and derive an expression for output	10	CO2	L2
output voltage. 26 Explain how op-amp can be used as comparator. 27 Design an adder circuit using op amp to obtain an output voltage of V _o =2[0.1V ₁ +0.5V ₂ +2V ₃] whwre V ₁ , V ₂ and V ₃ are input voltages. 28 What is an op-amp. Explain the ideal characteristics of the op-amp? 29 Define the following in case of a practical op-amp i) Slew rate ii) CMRR iii) Off set voltages iv) PSRR 30 Calculate the output voltage of a three input summing amplifier given R ₁ =200kΩ, R ₂ = 250KΩ, R ₃ = 500kΩ and R _f = 1MΩ. V ₁ = -2v, V ₂ =2 v, V ₃ =1v 31 Write any four advantages of negative feedback amplifiers? 32 What is operational amplifier? Explain the equivalent circuit of op-amp. 33 Explain op-amp based subtractor circuit and derive an expression for output voltage. 34 Show how op-amp can be used as integrator and derive an expression for 10 CO2 L2 coutput voltage.	24	Show how op-amp can be used as integrator and derive an expression for	10	CO2	L2
 Design an adder circuit using op amp to obtain an output voltage of V_o=2[0.1V₁+0.5V₂+2V₃] whwre V₁, V₂ and V₃ are input voltages. What is an op-amp. Explain the ideal characteristics of the op-amp? Define the following in case of a practical op-amp i) Slew rate ii) CMRR iii) Off set voltages iv) PSRR Calculate the output voltage of a three input summing amplifier given R₁=200kΩ, R₂ = 250kΩ, R₃ = 500kΩ and R_f = 1MΩ. V₁= -2v, V₂=2 v, V₃=1v Write any four advantages of negative feedback amplifiers? What is operational amplifier? Explain the equivalent circuit of op-amp. Explain op-amp based subtractor circuit and derive an expression for output voltage. Show how op-amp can be used as integrator and derive an expression for 10 CO2 L2 Explain the op-amp based differentiator circuit and derive an expression for 10 CO2 L2 	25		10	CO2	L2
 V_o=2[0.1V₁+0.5V₂+2V₃] whwre V₁, V₂ and V₃ are input voltages. What is an op-amp. Explain the ideal characteristics of the op-amp? Define the following in case of a practical op-amp i) Slew rate ii) CMRR iii) CO2 L2 Off set voltages iv) PSRR Calculate the output voltage of a three input summing amplifier given R₁=200kΩ, R₂ = 250KΩ, R₃ = 500kΩ and R_f = 1MΩ. V₁= -2v, V₂=2 v, V₃=1v Write any four advantages of negative feedback amplifiers? What is operational amplifier? Explain the equivalent circuit of op-amp. Explain op-amp based subtractor circuit and derive an expression for output voltage. Show how op-amp can be used as integrator and derive an expression for output voltage. Explain the op-amp based differentiator circuit and derive an expression for 10 CO2 L2 Explain the op-amp based differentiator circuit and derive an expression for 10 CO2 L2 	26	Explain how op-amp can be used as comparator.	10	CO2	L2
Define the following in case of a practical op-amp i) Slew rate ii) CMRR iii) 10 CO2 L2 Off set voltages iv) PSRR 30 Calculate the output voltage of a three input summing amplifier given $R_1=200k\Omega$, $R_2=250K\Omega$, $R_3=500k\Omega$ and $R_f=1M\Omega$. $V_1=-2v$, $V_2=2v$, $V_3=1v$ 31 Write any four advantages of negative feedback amplifiers? 10 CO2 L2 What is operational amplifier? Explain the equivalent circuit of op-amp. 10 CO1 L2 Explain op-amp based subtractor circuit and derive an expression for output voltage. 39 Show how op-amp can be used as integrator and derive an expression for output voltage. 40 Explain the op-amp based differentiator circuit and derive an expression for 10 CO2 L2	27		10	CO2	L3
Off set voltages iv) PSRR 30 Calculate the output voltage of a three input summing amplifier given R_1 =200k Ω , R_2 = 250K Ω , R_3 = 500k Ω and R_f = 1M Ω . V_1 = -2v, V_2 =2 v, V_3 =1v 31 Write any four advantages of negative feedback amplifiers? 32 What is operational amplifier? Explain the equivalent circuit of op-amp. 38 Explain op-amp based subtractor circuit and derive an expression for output voltage. 39 Show how op-amp can be used as integrator and derive an expression for output voltage. 40 Explain the op-amp based differentiator circuit and derive an expression for 10 CO2 L2	28	What is an op-amp. Explain the ideal characteristics of the op-amp?	10	CO1	L2
R_1 =200k Ω , R_2 = 250K Ω , R_3 = 500k Ω and R_f = 1M Ω . V_1 = -2v, V_2 =2 v, V_3 =1v 31 Write any four advantages of negative feedback amplifiers? 10 CO2 L2 32 What is operational amplifier? Explain the equivalent circuit of op-amp. 10 CO1 L2 Explain op-amp based subtractor circuit and derive an expression for output voltage. 39 Show how op-amp can be used as integrator and derive an expression for output voltage. 40 Explain the op-amp based differentiator circuit and derive an expression for 10 CO2 L2	29	, , , , , , , , , , , , , , , , , , , ,	10	CO2	L2
What is operational amplifier? Explain the equivalent circuit of op-amp. Explain op-amp based subtractor circuit and derive an expression for output voltage. Show how op-amp can be used as integrator and derive an expression for output voltage. Show how op-amp can be used as integrator and derive an expression for output voltage. Explain the op-amp based differentiator circuit and derive an expression for 10 CO2 L2 CO2 L2	30		10	CO2	L3
What is operational amplifier? Explain the equivalent circuit of op-amp. Explain op-amp based subtractor circuit and derive an expression for output voltage. Show how op-amp can be used as integrator and derive an expression for output voltage. Show how op-amp can be used as integrator and derive an expression for output voltage. Explain the op-amp based differentiator circuit and derive an expression for 10 CO2 L2	31		10	CO2	L2
Explain op-amp based subtractor circuit and derive an expression for output voltage. Show how op-amp can be used as integrator and derive an expression for output voltage. Show how op-amp can be used as integrator and derive an expression for output voltage. Explain the op-amp based differentiator circuit and derive an expression for output output voltage.	32		10	CO1	L2
Show how op-amp can be used as integrator and derive an expression for output voltage. L2 coutput voltage. L3 coutput voltage. L4 coutput voltage. L5 coutput voltage. L6 coutput voltage. L7 coutput voltage.	38	Explain op-amp based subtractor circuit and derive an expression for output	10		
	39	Show how op-amp can be used as integrator and derive an expression for	10	CO2	L2
	40	Explain the op-amp based differentiator circuit and derive an expression for	10	CO2	L2

D3. TEACHING PLAN - 3

Title:	BJT Applications, Feedback Amplifiers and Oscillators	Appr Time:	12 Hrs
а	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Describe the operation of diodes, BJT, FET and Operational Amplifiers.	CO1	L2
2	Design and explain the construction of rectifiers, regulators, amplifiers and oscillators.	CO2	L3
3	Explain the working and design of Fixed voltage IC regulator using 7805 and astable oscillator using Timer IC 555.	CO4	L2
b	Course Schedule		
Class No	Portion covered per hour	_	_
1	BJT as an amplifier	CO1	L2
2	BJT as a switch	CO1	L2
3			
	Transistor switch circuit to switch ON/OFF an LED and a lamp in a power circuit using relay	CO1	L2
4	Feedback amplifiers-Principle, properties and advantages of negative feedback	CO2	L2
5	Types of feedback, Voltage series feedback and gain stability with feedback	CO2	L2
6	Oscillators- Barkhaunsen's criteria for oscillation	CO2	L2
7	RC phase shift oscillator	CO2	L2
8	Wein bridge oscillator	CO2	L2
9	IC 555 timer and astable oscillator using IC 555	CO4	L2
10	Numericals on transistors	CO2	L3
11	Numericals on amplifiers	CO2	L3
12	Numericals on oscillators	CO2	L3
C	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Used as automatically controlled switches, TTL circuits, amplifiers, current drivers	CO2	L3
2	Applied in Tunable radio transmitters and receivers, signal generators	CO4	L3
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Explain BJT as an amplifier?	CO1	L2
2	Explain BJT as a switch?	CO1	L2
3	Explain Transistor switch circuit to switch ON/OFF an LED	CO2	L2
4	Describe the lamp in a power circuit using relay?	CO2	L2
5	Explain the principle of feed back amplifiers?	CO2	L2
6	List the types of feedback. Explain the properties and advantages of negative feedback.	CO2	L2
7	Explain the Voltage series feedback	CO2	L2
8	Describe the gain stability with feedback	CO2	L2
9	Explain the Barkhaunsen's criteria for oscillation	CO2	L2
10	Explain the working of RC phase shift oscillator	CO2	L2
11	Explain the working of RC phase strill oscillator Explain the working of Wein bridge oscillator	CO2	L2 L2
12	Draw the pin diagram of the IC 555 timer and explain astable oscillator using IC	CO2	L2 L2

е	Experiences	-	-
1		CO7	L2
2			

Title:		Appr Time:	13 Hrs
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Explain the different number system and their conversations and construct simple	CO5	L3
	combinational and sequential logic circuits using Flip-Flops.		
2	Describe the basic principle of operation of communication system and mobile	CO6	L2
	phones.		
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	Difference between analog and digital signals	CO5	L2
2	Number systems: Binary and hexadecimal	CO5	L2
3	Conversion: Decimal to binary and hexadecimal to decimal and vice-versa	CO5	L3
4	Conversion: Decimal to binary and hexadecimal to decimal and vice-versa	CO5	L3
5	Conversion: Decimal to binary and hexadecimal to decimal and vice-versa	CO5	L3
6	Boolean algebra, Basic and universal gates	CO5	L3
7	Half and full adder	CO5	L3
8	Multiplexer, decoder,	CO5	L2
9	SR and JK flip flops	CO5	L2
10	Shift register,	CO5	L2
11	3 bit Ripple counter.	CO5	L2
12	Basic communication system,	CO6	L2
13	Principle of operations of Mobile phone	CO6	L2
C	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Temporary data storage, data transfer. Data manipulation, counters	CO5	L3
2	Mobile phones	CO6	L2
d	Review Questions	_	-
-	The attainment of the module learning assessed through following questions	-	-
1	Differentiate between analog and digital signals	CO5	L2
2	Explain the Binary and hexadecimal forms of numbers	CO5	L2
3	Explain conversion process of Decimal to binary and hexadecimal to decimal and	CO5	L2
4	vice-versa State and prove De-Morgan's Theorem	CO5	L2
5		CO5	L2
6	Explain the basic laws in boolean algebra With truth table explain Basic and universal gates	CO5	L2
7	Realize Half and full adder sing basic and universal gates	CO5	L2
8			L2 L2
	Explain the working of the following: I) Multiplexer ii) decoder iii) SR flip flop iv) JK flip flop	CO5	LZ
9	Explain the following: I) Shift register ii) 3 bit Ripple counter.	CO5	L2
10	With a neat block diagram explain the communication system?	CO6	L2

11	Explain the Principle of operations of Mobile phone	CO6	L2
e	Experiences	-	-
1		CO10	L2
2		CO9	

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs (Code	18ELN24	Sem:	П	Marks:	50	Time:	1hr 45 mir	nutes	
Cour	se:	Basic Elect	ronics			I				
-	-	Note: Answ	er all ques	tions, each	n carry equal n	narks. Mo	dule : 4, 5	Marks	СО	Level
1	а	Explain BJ1	Γ as an am	plifier?				8	CO1	L2
	b	Explain Tra	nsistor swi	tch circuit	to switch ON/C	FF an LE	ED .	8	CO2	L2
	С	Explain the	working of	astable o	scillator constr	ucted usir	ng 555 timer	9	CO4	L2
					OR					
2	а	Explain BJ1	Γ as a swit	8	CO1	L2				
	b	Explain the	Explain the Barkhaunsen's criteria for oscillation							
	С	Draw the pin diagram of the IC 555 timer and explain astable oscillator using IC 555							CO4	L2
3	a	Solve the fo	ollowing (i)	(ABC) ₁₆ =((?) ₂ (ii) (985.85	5) ₁₀ =(?) ₈		8	CO5	L2
	b	Reduce the F=ABC+AB	_		xpression and	impleme	nt using basic gate	es. 8	CO5	L2
	С	Explain the	Principle o	of operation	ns of Mobile ph	none		9	CO6	L2
4	а	Write the de	ecimal equi	ivalent of (10AB) ₁₆			8	CO5	L2
	b	_	-	_	c gates with thigh and B and	•	s A, B, C and outp erent	out 8	CO5	L2
	С	With a neat	block diag	ram expla	in the commu	nication s	ystem?	9	CO6	L2

b. Assignment - 3

			Mode	l Assignme	nt Questic	ons				
Crs Code:	18ELN24	Sem:	II	Marks:	10	Time:	90 – 120 minutes			
Course:	Basic Elec	ctronics			Module	e: 4, 5				
SNo			Assignm	ent Descrip	tion		Marks	СО	Level	
1	Explain BJ	T as an amp	lifier?				8	CO1	L2	
2	Explain BJ	T as a switc	h?				8	CO1	L2	
3	Explain Tra	Explain Transistor switch circuit to switch ON/OFF an LED							L2	
4	Describe th	ne lamp in a p	ower circu	uit using rela	ay?		8	CO2	L2	
5	Explain the	principle of	feed back	amplifiers?			8	CO2	L2	
6	List the typ negative fe		ck. Explai	in the prope	rties and	advantages of	8	CO2	L2	
7	Explain the	Voltage ser	es feedba	ck			8	CO2	L2	
8	Describe th	ne gain stabil	ity with fee	dback			8	CO2	L2	
9	Explain the	Barkhaunse	n's criteria	for oscillati	on		8	CO2	L2	
10	Explain the working of RC phase shift oscillator							CO2	L2	
11	Explain the	8	CO2	L2						
12	Draw the p	in diagram o	f the IC 55	5 timer and	explain a	stable oscillator	8	CO4	L2	

	using IC 555			
13	Differentiate between analog and digital signals	8	CO5	L2
14	Explain the Binary and hexadecimal forms of numbers	8	CO5	L2
15	Explain conversion process of Decimal to binary and hexadecimal to	8	CO5	L2
	decimal and vice-versa			
16	State and prove De-Morgan's Theorem	8	CO5	L2
17	Explain the basic laws in boolean algebra	8	CO5	L2
18	With truth table explain Basic and universal gates	8	CO5	L2
19	Realize Half and full adder sing basic and universal gates	8	CO5	L2
20	Explain the working of the following: I) Multiplexer ii) decoder iii) SR flip	8	CO5	L2
	flop iv) JK flip flop			
21	Explain the following: I) Shift register ii) 3 bit Ripple counter.	8	CO5	L2
22	With a neat block diagram explain the communication system?	8	CO6	L2
23	Explain the Principle of operations of Mobile phone	8	CO6	L2
24	Solve the following (i) (ABC) ₁₆ =(?) ₂ (ii) (985.85) ₁₀ =(?) ₈	8	CO5	L2
25	Reduce the following Boolean expression and implement using basic	8	CO5	L2
	gates. F=ABC+ABC+ABC			
26	Write the decimal equivalent of (10AB) ₁₆	8	CO5	L2

F. EXAM PREPARATION

1. University Model Question Paper

Course:		Basic Electronic	cs				Month /	Year	May /2	2019
Crs C	ode:	18ELN24 Sem: II Marks: 100 Time:								inutes
Modu le	Note	Answer all FIVE	E full questions	s. All questior	ns carry equa	al marks.		Marks	СО	Level
1	а	Explain the working of PN junction diode under forward biased and reverse biased condition.						7	CO1	L2
		With neat sketch explain the formation of depletion region in unbiased pn junction								L2
	С	Explain the working of photodiode with its VI characteristics.								L2
				OR						
1	1	With relevant w FWR?	ictor of a	7	CO2	L3				
	b	Explain how a its performance	6	CO1	L2					
	С	What is 78XX series? Explain the 7805 fixed IC voltage regulator?								L2
2	а	Draw and explain JFET transfer characteristics							CO1	L3
	b	Derive Square	law expressio	n I _D , and also	find the Inpu	ıt resistance?		7	CO1	L3
	С	Construct deple	etion and enha	ancement type	e MOSFET.			8	CO1	L3
				OR						
2	а	What are the ap	oplications of	SCR. Explain				5	CO3	L2
	b	Draw the circuit diagram to show how an SCR can be triggered by application of a pulse to the gate terminal. Sketch the circuit waveforms and explain its operation?						7	CO3	L2
	С	Sketch typical SCR forward and reverse characteristics. Identify all regions of characteristics and all important current and voltage level?						8	CO3	L2
3	а	Distinguish bety	istinguish between open loop and closed loop configuration of op-amp.							

b	What is voltage follower w.r.t op-amp? Explain the circuit of voltage follower.	7	CO2	L2
С	What is op-amp summer circuit? Explain the op-amp based summer circuit	8	CO2	L2
	with derivation to output voltage?			
	OR			
а	Calculate the output voltage of a three input summing amplifier given	7	CO2	L3
	R_1 =200kΩ, R_2 = 250KΩ, R_3 = 500kΩ and R_f = 1MΩ. V_1 = -2v, V_2 =2 v, V_3 =1v			
b	Write any four advantages of negative feedback amplifiers?	5	CO2	L2
С	What is operational amplifier? Explain the equivalent circuit of op-amp.	8	CO1	L2
а	Explain Transistor switch circuit to switch ON/OFF an LED	5	CO2	L2
b	Describe the lamp in a power circuit using relay?	7	CO2	L2
С	Explain the principle of feed back amplifiers?	8	CO2	L2
	OR			
а	Explain the working of RC phase shift oscillator	5	CO2	L2
b	Explain the working of Wein bridge oscillator	7	CO2	L2
С	Draw the pin diagram of the IC 555 timer and explain astable oscillator using IC 555	8	CO4	L2
а	State and prove De-Morgan's Theorem	5	CO5	L2
b	Explain the working of the following: I) Multiplexer ii) decoder iii) SR flip flop	7	CO5	L2
	iv) JK flip flop			
С	With a neat block diagram explain the communication system?	8	CO6	L2
	OR			
а	With truth table explain Basic and universal gates	5	CO5	L2
b			CO5	L2
С		8	CO6	L2
	a b c c a b c c a b b c c	C What is op-amp summer circuit? Explain the op-amp based summer circuit with derivation to output voltage? OR a Calculate the output voltage of a three input summing amplifier given R ₁ =200kΩ, R ₂ = 250KΩ, R ₃ = 500kΩ and R _f = 1MΩ. V ₁ = -2v, V ₂ =2 v, V ₃ =1v b Write any four advantages of negative feedback amplifiers? C What is operational amplifier? Explain the equivalent circuit of op-amp. a Explain Transistor switch circuit to switch ON/OFF an LED b Describe the lamp in a power circuit using relay? c Explain the principle of feed back amplifiers? OR a Explain the working of RC phase shift oscillator b Explain the working of Wein bridge oscillator c Draw the pin diagram of the IC 555 timer and explain astable oscillator using IC 555 a State and prove De-Morgan's Theorem b Explain the working of the following: I) Multiplexer ii) decoder iii) SR flip flop iv) JK flip flop c With a neat block diagram explain the communication system? OR a With truth table explain Basic and universal gates b Realize Half and full adder sing basic and universal gates	C What is op-amp summer circuit? Explain the op-amp based summer circuit with derivation to output voltage? OR Calculate the output voltage of a three input summing amplifier given R ₁ =200kΩ, R ₂ = 250KΩ, R ₃ = 500kΩ and R _f = 1MΩ. V ₁ = -2v, V ₂ =2 v, V ₃ =1v b Write any four advantages of negative feedback amplifiers? c What is operational amplifier? Explain the equivalent circuit of op-amp. a Explain Transistor switch circuit to switch ON/OFF an LED b Describe the lamp in a power circuit using relay? c Explain the principle of feed back amplifiers? OR a Explain the working of RC phase shift oscillator b Explain the working of Wein bridge oscillator c Draw the pin diagram of the IC 555 timer and explain astable oscillator using IC 555 a State and prove De-Morgan's Theorem b Explain the working of the following: I) Multiplexer ii) decoder iii) SR flip flop iv) JK flip flop c With a neat block diagram explain the communication system? a With truth table explain Basic and universal gates 5 Realize Half and full adder sing basic and universal gates	c What is op-amp summer circuit? Explain the op-amp based summer circuit with derivation to output voltage? OR a Calculate the output voltage of a three input summing amplifier given R_1 =200k Ω , R_2 = 250k Ω , R_3 = 500k Ω and R_1 = 1M Ω . V_1 = -2 V , V_2 =2 V , V_3 =1 V b Write any four advantages of negative feedback amplifiers? 5 CO2 c What is operational amplifier? Explain the equivalent circuit of op-amp. 8 CO1 a Explain Transistor switch circuit to switch ON/OFF an LED 5 CO2 b Describe the lamp in a power circuit using relay? 7 CO2 c Explain the principle of feed back amplifiers? 8 CO2 OR a Explain the working of RC phase shift oscillator OR b Explain the working of Wein bridge oscillator 7 CO2 c Draw the pin diagram of the IC 555 timer and explain astable oscillator using IC 555 a State and prove De-Morgan's Theorem 5 CO5 Explain the working of the following: I) Multiplexer ii) decoder iii) SR flip flop c With a neat block diagram explain the communication system? a With truth table explain Basic and universal gates 5 CO5 Realize Half and full adder sing basic and universal gates

2. SEE Important Questions

Course:		Basic Electronics Month /				Year	May /2018			
Crs Code:		18ELN24	Sem:	2	Marks:	80	Time:		180 minutes	
	Note	Answer all FIV	E full ques	tions. All qu	uestions carry equ	al marks.		-	-	
Mod	Qno.	Important Que	stion					Marks	co	Year
ule										
1	а	What is rectific	er? Draw tl	ne circuit fo	or HWR and expl	ain its wor	king? Derive	10	CO2	2004
		the expression	for I _{DC} effic	ciency η PI\	/, RMS value of vo	oltage				
	b	Draw the circu	it for FWR	and explai	n its workintg? De	erive the e	xpression for	10	CO2	2013
		I _{DC} efficiency η	PIV, RMS \	alue of vol	tage					
	С	With neat circuit diagram explain working princirples of bridge wave rectifier?					10	CO2	2013	
	d Explain the performance of zener diode in terms of souce and load effect					ad effects.	10	CO1	2013	
	е	Explain photo	diode with	neat diagra	m?			10	CO1	2012
2	а	Draw the drain characteristics of a n-channel JFET and explain it.						10	CO2	2012
	b	Explain the construction and operation of MOSFET					8	CO2	2010	
	С	Sketch and explain the VI characteristics if SCR?						8	CO3	2010
	d	Draw two transister equivalent model of SCR.						10	CO3	2012
	е	Explain phase	control app	olication us	ing SCR			10	CO3	2012
3	а	Explain the ideal opamp characteristics.						8	CO1	2012
	b	Explain the fol	lowing i)CN	IRR II)Slev	v rate iii) PSRR			8	CO1	2012

COURSE PLAN - CAY 2019-20

	С	With a help of circuit diagram, derive the output voltage for integrator	8	CO2	2013
	d	Show how an opamp can be used as differentiator. derive expression for output voltage	9	CO2	2010
	е	Draw the following circuit using opamp: i)adder ii) voltage follower.	9	CO2	2014
4	а	Explain how BJT can be used as an amplifier.	10	CO2	2009
	b	Give four advantages of negative feedback in amplifier.	10	CO2	2009
	С	With circuit explain the working of RC phase shift oscillator.	10	CO2	2011
	d	Explain barkhausen criterian for oscillation.	10	CO2	2009
	е	Draw the pin diagram of the IC 555 timer and explain astable oscillator using IC 555	8	CO4	2011
5	а	What are universal gates? Realize AND and OR gates using universal gates.	10	CO5	2011
	b	Subtract (57) ₁₀ from (43) ₁₀ using 2's complement form	10	CO5	2011
	С	Realize two input EX-OR gate using only NAND gates.	10	CO5	2010
	d	Explain with a neat diagram shift register	12	CO5	2012
	е	With a neat diagram explain communication systems.	12	CO6	2009